B Lifetimes

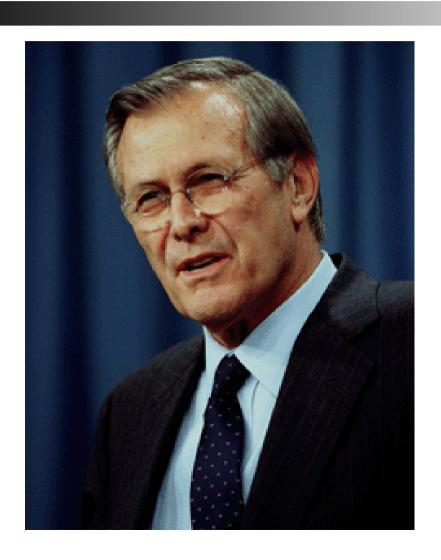
Andy Foland B Meeting 6/26/03

Not on behalf of Lifetime Task Force Uozumi, Ukegawa, Tanaka, Farrington Kravchenko, Paulini, Paus, Shapiro, Wicklund

How Do You Measure a Lifetime?

- Select a decay of particle of interest
- Estimate flight distance L
- Estimate boost βγ
- •Use decay time $t \equiv L/\beta \gamma$ distribution to estimate
- *lifetime* au_{signal}
 - Account for
 - Flight-distance dependent selection bias
 - Resolution
 - Backgrounds

- What can go wrong?
 - Estimate of flight distance
 - Alignment, scale factor, vertex problems
 - Estimate of boost
 - p_T, cosθ, K-factor
 - L-dependent bias
 - SVT
 - Pattern Rec (HL)
 - Resolution function
 - Non-gaussian tails
 - Background
 - Estimate of f_R
 - Decay time distribution of bkgd



Introduction

- Known Knowns
- Known Unknowns
- Unknown Unknowns

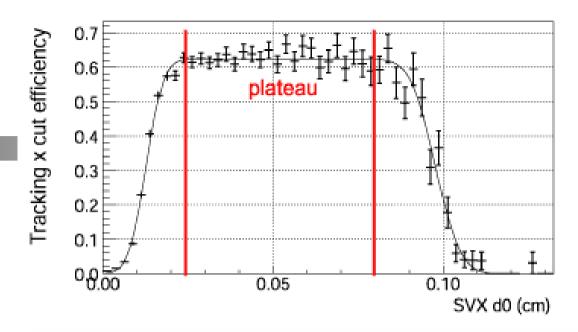
Known Knowns

Measurements

- Semileptonic Lifetimes
- Exclusive Lifetimes
- Charm Lifetimes

Studies

- Alignment
 - Bows
- SVT trigger bias

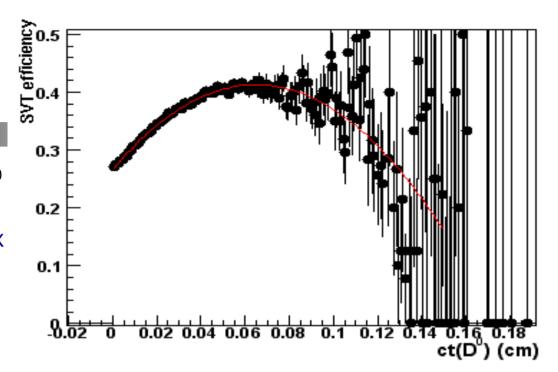

KK: Semileptonic Lifetimes

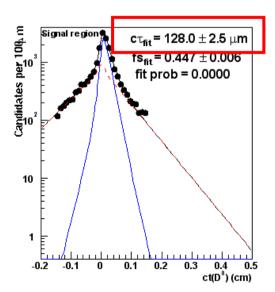
- Now using cuts very similar to Run I
 - In particular, use σ_{ct} instead of σ_{Lxy}
- •8 GeV μ + D⁰
 - $c\tau = 421 \pm 16 \mu m$
 - If use σ_{Lxy} cut
 - cτ= 486±16 μm
- ■4 GeV m + SVT
 - $c\tau = 434\pm 9 \mu m$
- ■Mixture of B⁰, B⁺
 - MC predicts 495 μm

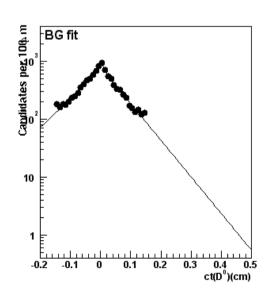
- Cross check from Hya K.
 - No smoking guns found
- μ + D*+ also low
 - More purely B⁰
 - MC predicts 475 μm
 - cτ ~420 μm
- •μ + D+ preliminarily (first results this week) very low
 - Also fairly pure B^o
 - cτ ~390 μm

KK: SVT Studies

- ■Two studies done for lepton+D⁰
 - Require d_o of tracks is entirely within plateau region
 - Vary "plateau" region slope, quantify effect on τ
- Both studies show negligible change in extracted lifetime
 - 0, +5 μm respectively


KK: Exclusive B Lifetimes


Mode	PDG	σPDG	Msmt	Error	Ratio	Ratio Err.	Citation
B0 -> Psi K*	462	5	425	29	0.92	0.06	Blessed
B0 -> Psi K0	462	5	385	67	0.83	0.15	6387
B+ -> Psi K+	502	5	470	21	0.94	0.04	Blessed
B+ -> Psi K*	502	5	630	91	1.25	0.18	6387
Bs -> Psi Phi	452	21	379	60	0.84	0.14	Blessed
Λb ->Psi Λ	368	26	366	68	0.99	0.20	Pre-blessed


- CDF "Lifetime Scale Factor": 0.93±0.03
 - Removed CDF Run I Msmts from PDG by hand
 - Did not do anything fancy in calculating average ratio (no correlated systematic uncertainties, in particular)
 - Cf. μ+D⁰ scale factor: 0.89±0.02
 - As will show, though, there are reasons to believe this may be coincidence

KK: Charm Lifetime

- Measure D⁰ lifetime in μ+D⁰
 - Flight distance from μ+D⁰ vertex to D⁰ vertex
 - SVT trigger introduces (fairly moderate) D^o ctdependent efficiency
 - Re-evaluate curve
 - Fit for D⁰ lifetime
- •Find 128±3 mm
 - PDG: 123 μm
 - MC indicates +2 mm bias from technical issue in ct efficiency function
- •Can also measure D+, Ds+ lifetimes this way
- Seems to rule out global scale problem

KK: Alignment

- Konstantin Bow and Alignment Tests
 - Compare three versions of the alignment
 - Compare default to
 - All ladders bowed in and out 50 μm
 - All ladders at 50 µm higher and lower radius than recorded
- Bow effects all under 3 μm in cτ
- Alignment version variation
 - 18 μm between "no alignment" and best available at the time
 - 5 between first alignment and best alignments of ISL, COT alignment
 - "No alignment" had large scale factor
 - Assigned 5µm total

- Ronan SVX alignment
 - Performed I+D+ lifetime of D+ with
 - Standard alignment
 - Ronan's SVX alignment
 - Difference ~ 10 μm
- Seems to rule out large alignment/bow effects
- But now there are new
- - Need to re-evaluate

KK: Run Dependence

- Konstantine found pre- and post-shutdown difference
 - B+
 - Pre-shutdown: 470±18
 - Post-shutdown: 522±26
 - (487±15)
 - BO
 - Pre-shutdown: 427±25
 - Post-shutdown: 490±32
 - (451±20)
 - Exclusive lifetime scale factor becomes
 - 0.97±0.03

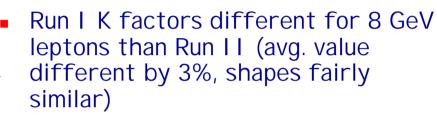
- No pre/post difference in semileptonic decays
 - Pre-shutdown: 434 ± 9
 - Post-shutdown: 421 ± 11

Known Unknowns

- Semileptonic AnalysisEffects
 - Background description
 - K-factors

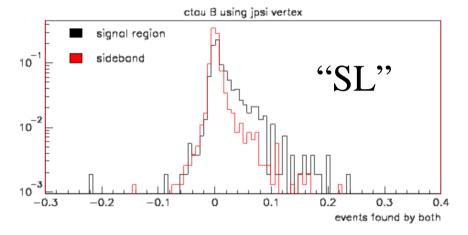
- CDF-wide
 - Detector Effects
 - Length scale
 - Resolution functions
 - Reconstruction
 - HL tracks
 - CTVMFT
 - Environment / L_{inst}

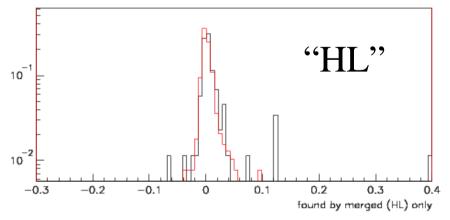
KU: Semileptonic Analysis


Backgrounds

- Fake D⁰ background seems wellcontrolled
 - Well-defined sidebands
 - Correct cτ
- D⁰+I background
 - L either fake, or not from B SL decay

- No accounting
 - But comparison of many MC distributions looks OK
- Background lifetimes have somewhat counterintuitive behaviors
 - Often longer than B, and multi-component
 - No positive evidence of mismodeling, though


K-factors



- Not known why
- Use of Run I K factors seems to yield correct answer (11% shift)
 - But both Satoru and Hya independently generated the Run H K-factors and largely agreed
 - I lya sees 5% shift in lifetime result for using <K> instead of convoluting K-factor
- p_T dependence of K-factors is fairly small
 - m_{IDO} dependence unknown to me

KU: HL Tracking

- •Psi+VO analyses (Psi Ks, Psi Λ) see large lifetime effects due to HL VO tracks
 - B's w/ HL tracks have lifetimes almost consistent with 0
- This behavior is not reproduced in MC!
 - Probably due to environment
- Belief
 - HL bias towards beamspot biases Psi-flight-distance selection efficiency through pointing constraint
 - The actual V0 COT tracks are not moving the vertex itself around!
 - Not confirmed in detail yet

Unknown Unknowns

"Each year we discover a few more of these unknown unknowns"

Scorecard

My Own Take

- Semileptonics present big problem
 - Headed for 8σ w/ post-shutdown data
 - SVT/alignment not likely to be problem
 - p_T spectrum of B's also seems unlikely culprit
 - Vertex position not likely to be culprit
- Many, many things to check
 - Need to prioritize in order to maximize odds of finding it quickly
 - K factors, HL, large σ_{Lxy}, non-B background
 - p_T spectrum dependence, K(m_{IDO}), XFT, SVX hit requirements, EVTGEN/QQ

CDF-wide

- D^o lifetime is spot on
- Including all data, exclusive lifetimes seem OK
- Hard to make large CDF-wide effects
 - E.g. alignment~10 μm
- Personally doubt that problem is CDF-wide
- •We have to get this right
 - Production train leaving the station
- To ponder:
 - Would this have been sent out if PDG did not already tell us the right answer?

(One Unendorsed Plan)

Semileptonic Analysis

- Understand Runl / Runl I K-factor disagreement
- Remeasure with HL removed (reprocessing)
- Explore lifetime of large σ_{Lxy} events
- Look at e+D⁰ (bkgds)
- Measure D+ lifetime in I+D+
- Quantification of p_T spectrum dependence
- Should we use m_{IDO}-dependent Kfactors?
- New XFT configuration (1miss/2-miss)
- Check EVTGEN/QQ difference

CDF-wide Checklist

- High-statistics D*+ analysis
 - $\quad \mathsf{D} {\rightarrow} \mathsf{K} \pi, \ \mathsf{D} \rightarrow \mathsf{K}_{\mathsf{S}} \pi \pi$
 - cτ as function of phi, SVX barrel, run range, L_{inst}, XFT, etc
 - Hard to know correct answer, but easy to spot variations with above
- Alignment tests
 - Pre- and post- COT realignment
 - Different requirements on Si hits on tracks
- Does phantom layer or final fitter matter?
- Measmnt. of beampipe radius
- Resolution function: Υ→μμ